

Is PostgreSQL Catching Up to Oracle Database?

Francisco Munoz Alvarez

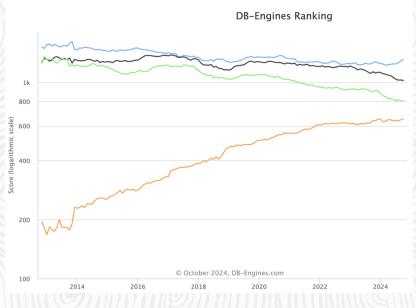
Distinguished Product Manager

Oracle Database High Availability (HA), Scalability and Maximum Availability Architecture (MAA) Team

@fcomunoz

http://www.linkedin.com/in/franciscomunozalvarez

www.oraclemaa.com



Ecosystem

The PostgreSQL Momentum

Source: db-engines.com

The PostgreSQL Momentum

Popularity increased with public clouds offering PostgreSQL services.

Why is PostgreSQL so popular?

- Open source
 Free to use, modify, and distribute.
- No upfront costs
 No licensing cost, no complex contracts.
- Broad offers from service providers On-premises and cloud services.
- SQL features
 Good SQL support, multi-model (JSON, spatial data, etc.)
- Community support
 A large community of developers.
- Ease of use
 Small footprint, simple to deploy.

What about:

- Ecosystem
- Extensions
- Architecture
- Data Protection
- Security
- Availability
- Compatibility
- Observability
- Performance
- Scalability
- Innovation
- Total cost of ownership

What our Customers Say About PostgreSQL

Technology Sprawl

Integrating too many extensions and specialized databases increases security risks and compatibility issues. The resulting IT architecture is significantly more complex.

Inferior Performance and Observability

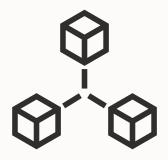
Applications ported from Oracle to PostgreSQL often do not meet performance requirements and require application rearchitecture.

Lack of Enterprise-Grade capabilities

The lack of advanced security, data lifecycle, protection, and high availability features forces customers to buy additional software or build non-business-related solutions inhouse.

Higher Operational Costs

Upgrades and application deployments require more downtime, while administrative tasks are heavily affected by the PostgreSQL architecture.


Be Ready for the Unexpected

Can you face unexpected growth?

Meeting performance requirements at scale can be extremely expensive on-premises and in the Cloud. Only Oracle Exadata and Exadata Cloud Services offer peace of mind with predictable performance and cost.

Do you know the transactional semantics of PostgreSQL variants?

Scalability limits in PostgreSQL require scale-out solutions offered by Postgres-compatible databases. However, data distribution has intrinsic complexity and comes with trade-offs.

 $\underline{https://video hub.oracle.com/media/+Database+Development+Champions+-+Are+Are+Cloud+Databases+fast+enough+for+Hardcore+OLTP/1_o5aus0zy}$

The Complexity of the PostgreSQL Ecosystem

Growing ecosystem resulting in a Complex Landscape and Complex Governance

Distributors –

Service Providers

- EDB
- Cybertec
- PostgreSQL
 Professional
- Fujitsu
- Percona
- SplendidData
- StackGres
- Pigsty
- •

Forks

- EDB
- YvorySQL
- Yugabyte
- CockroachDB
- Greenplum
- FerretDB
- Oriole
- PowerGres
- ...

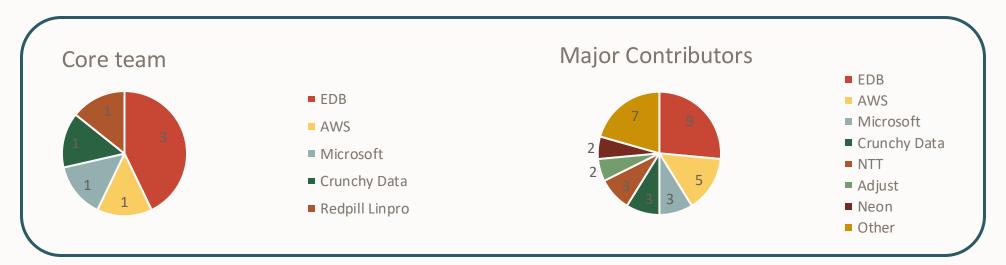
Cloud Variants

- OCI
- Azure
- AWS RDS
- GCP
- Heroku
- Neon
- Aiven
- Tembo
- Exoscale
- Clever Cloud
- Timescale
- StackIT
- •

Extensions

- PostGIS
- Citus
- TimescaleDB
- Greenplum
- WarehousePG
- ParadeDB
- Hydra
- pgvector
- pg quack
- •
- 1000+ extensions!




PostgreSQL Core Product

Or the "Vanilla" PostgreSQL

Lightweight engine

- Appealing for containerization.
- Minimal enterprise features.
- How easy is it to integrate new code?
- Who decides what goes into the core product?
- Often pushing back suggestions (see hints).
 https://www.postgresql.org/message-id/m3d6avxqmm.fsf%40wolfe.cbbrowne.com

Extensions

PostgreSQL Needs Extensions

To solve many trivial problems

- Verify the password complexity (passwordcheck)
- Get real-time statement statistics (pg_stat_statements)
- Get basic database metadata (db_info)
- Run REST calls (http)
- Use optimizer hints (pg_hint_plan)
- ...

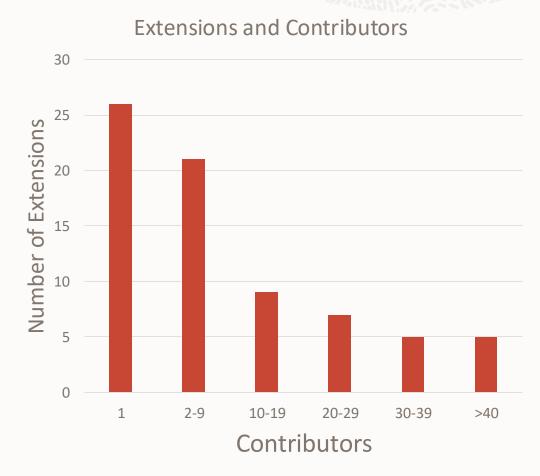
To mimic some Oracle features


- Interval partitioning (pg_partman)
- Table reorganization (pg_repack)
- Job scheduling (pg_cron)
- Temporal validity (periods)
- Flashback Data Archive (pgmemento)
- Active Session History (pgsentinel)
- Message queueing (Qgres)
- ...

A common argument from the PostgreSQL community is: "These capabilities do not belong to a database engine".

Many PostgreSQL extensions might not have the required maturity to run production databases.

Extension Management can be Problematic


https://www.postgresql.eu/events/pgconfde2025/sessions/session/6474/slides/695/Extend%20your%20PostgreSQL_%20The%20world%20of%20PostgreSQL%20extensions% 20-%202025.pdf

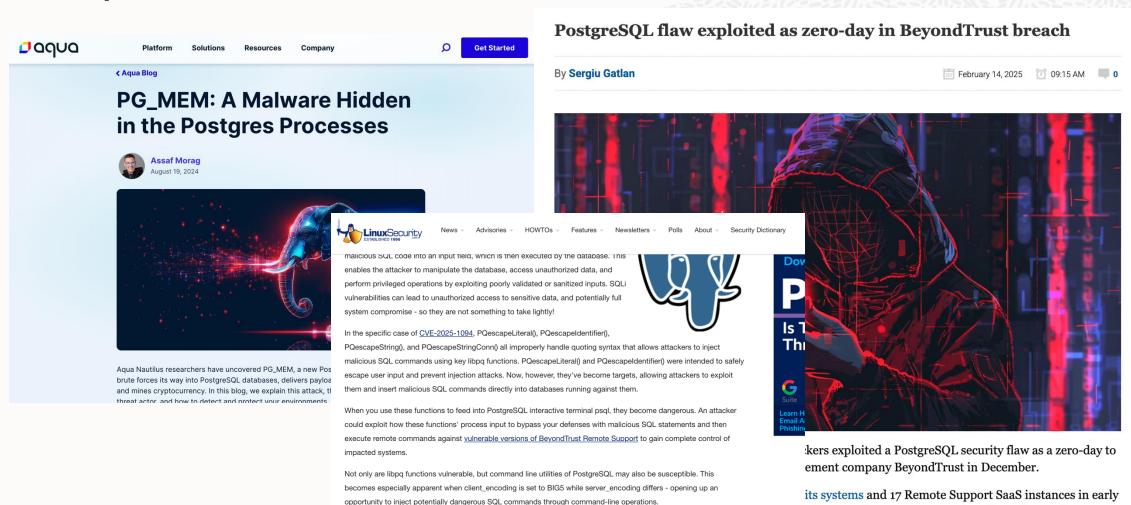
PostgreSQL Extensions

"The real strength of PostgreSQL is its extensibility" (quot.)

- Too many extensions (1000+) ⁽¹⁾
- It's common to install 20+ of them
- Some distributions offer 200+ extensions
- Different source repos and OS requirements
- Different licenses
- Complex governance
- Security concerns (2)
- Who creates and maintains them?

^{*} Checked against the 70 most popular extensions, excluding contrib

⁽¹⁾ https://gist.github.com/joelonsql/e5aa27f8cc9bd22b8999b7de8aee9d47
(2) https://www.postgresql.org/docs/current/extend-extensions.html#EXTEND-EXTENSIONS-SECURITY


Security issues can arise from "not secure extensions

Risks of insecure extensions

- Malicious code injection: Insecure extensions can act as an entry point for attackers. A malicious extension could have a backdoor, allowing a user to execute arbitrary code on the server or a user with insufficient privileges to escalate their access to superuser status.
- **Arbitrary code execution**: A compromised or poorly written extension can allow an attacker to execute code on the server, potentially leading to a full system compromise.
- Privilege escalation: An attacker might exploit a vulnerability in an extension to gain higher privileges than they are supposed to have, potentially allowing them to access sensitive data or control the database system

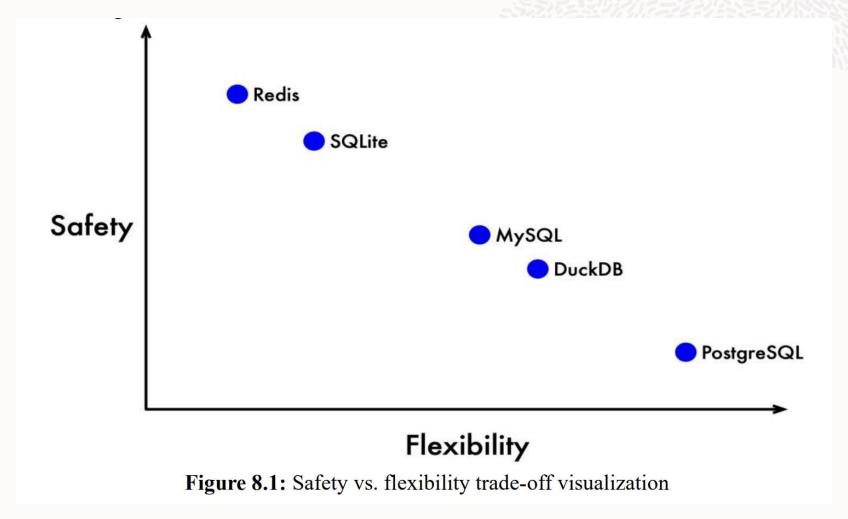
Security issues can arise from "not secure extensions

Affected Versions and Patches

It is crucial to understand which PostgreSQL versions are at risk and the patches released address to address the

issue. Specifically, those using versions prior to 17.3, 16.7, 15.11, 14.16 or 13.19 could be vulnerable to this exploit Patches for this issue have already been released to address it. PostgreSQL 16.7, 15.11, 14.16, and 13.19 versions were 1-12356 and CVE-2024-12686) and a stolen API key.

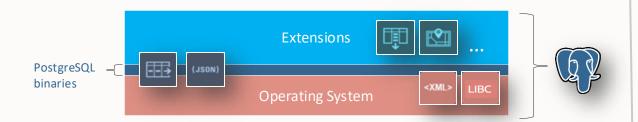
n Remote Support SaaS API key to compromise its


e U.S. Treasury Department disclosed that its network

Known Issues and Cases in Extensions

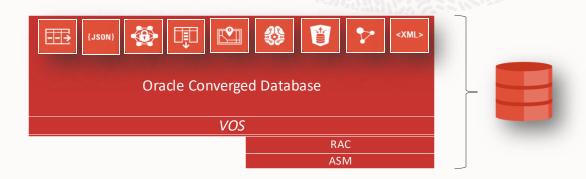
- Privilege Escalation via Extensions:
 - CVE-2023-32305 (aiven-extras extension): A flaw allowed an unprivileged database user to elevate their privileges to superuser level through a specific bug in this third-party extension.
 - CVE-2023-39417 (Extension installation scripts): A vulnerability in how extension installation scripts handle substitutions (@extowner@) could allow SQL injection and arbitrary code execution with higher privileges during installation.
 - CVE-2022-2625 (Various extensions):
 core server impacted several extensions
 certain objects to execute arbitrary SQL.
 - CVE-2018-1058: An attacker could use t functions are resolved) to execute code occuld be leveraged via extensions or custom
- Arbitrary Code Execution via Language Extensions:
 - CVE-2024-10979 (PL/Perl): A high-severity flaw in the PL/Perl extension allowed an unprivileged user to alter environment variables, which could lead to arbitrary code execution even without an operating system user account on the server.
 - Buffer Overflows: Older vulnerabilities in extensions like pgcrypto have included memory or buffer overflows that could potentially lead to code execution or denial of service, requiring an authenticated user to exploit. ②

Survey and Evaluation of Database Management System Extensibility



http://reports-archive.adm.cs.cmu.edu/anon/2023/CMU-CS-23-144.pdf... https://www.vldb.org/pvldb/vol18/p1962-kim.pdf

Architecture


PostgreSQL vs. Oracle Database Architecture

Relies on OS and external libraries as much as possible

- Sub-optimal memory utilization (1)
- Unpredictable behavior (2)
- Various issues can arise during OS updates (3)
- No central governance in the supply chain

1.4 Million lines of code

Zero external dependencies

- End-to-end optimization and compatibility
- Consistent behavior everywhere
- Comprehensive and OS independent
- Strict control and governance of the whole stack

14 Million lines of code

^{(1) (2)} https://www.dbi-services.com/blog/postgresql-shared-buffers-vs-free-ram/

^{(3) &}lt;a href="https://gitlab.com/gitlab-org/gitlab/-/issues/369573">https://gitlab.com/gitlab-org/gitlab/-/issues/369573 (probably solved in PostgreSQL 17)

PostgreSQL vs. Oracle Database Architecture

<u>Source: https://www.youtube.com/watch?v=df-l2PxUidl</u>
Any Pavlo, Carnegie Mellow University (CMU)

"Good enough" but possibly unfit for mission-critical environments

PostgreSQL Has a Bad MVCC Implementation

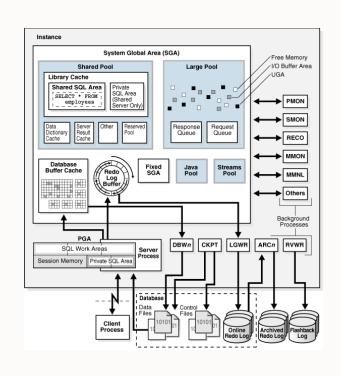
"Our research at Carnegie Mellon University [...]
have shown that its MVCC implementation
is the worst among the other widely used relational
DBMSs, including MySQL, Oracle,
and Microsoft SQL Server."

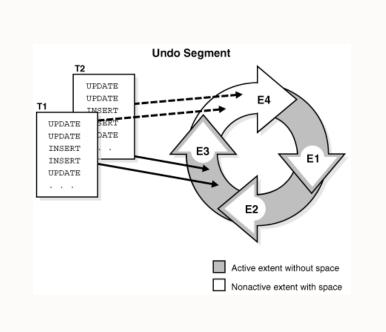
Source: https://ottertune.com/blog/the-part-of-postgresql-we-hate-the-most

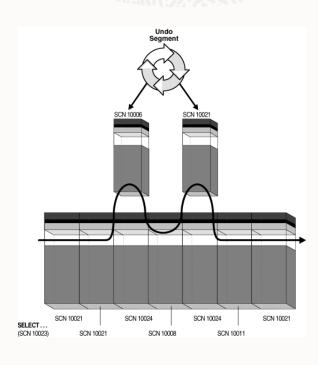
Most annoying issues:

- Data duplication
- Table bloat
- Index write amplification
- Transaction Wraparound
- Vacuum Management
- Transactional DDLs (2)

Oracle Database's maturity is the result of 45+ years of running the world's most significant and critical workloads.

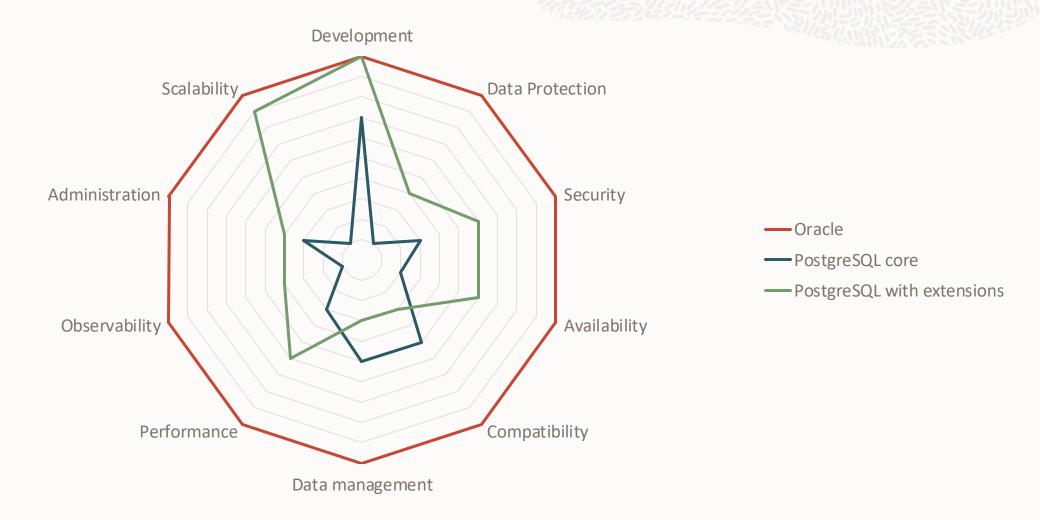

Kyle Hailey • 1st
Co-Founder Innovage Al
3w • Edited • (5)


The best database out there, by far, is Oracle. It works in the highest percentage of situations. Now, if you think PostgreSQL works for you, you're lucky, because it works for some cases and it doesn't for others. If you're using MySQL and it works, you're even luckier. It's not because MySQL or PostgreSQL are as good as Oracle, it's just you're lucky. PostgreSQL is the first database I would turn to for my RDBMS needs, but if I had a critical database with super high throughput and high reliability ideas, I'd use Oracle (Update, yes money matters, if I'm not making money I'm going to use Postgres and not Oracle. If I'm doing 50,000 transactions a second I'm most likely making money and can afford Oracle)


Copyright © 2025, Oracle and/or its affiliates

Oracle Database MVCC is Hard to Beat

20+ years later, Automatic Undo Management is probably still the best implementation


EnterpriseDB started the Zheap project in 2013 to implement UNDO-based MVCC.

The last commit was in 2019, and the project is at a dead point.

https://wiki.postgresql.org/wiki/Zheap

Product Maturity and Completeness (1)

⁽¹⁾ The figures shown here <u>are subjective</u> and estimated considering the advanced Oracle features highlighted for each category during the rest of the presentation.

Data Protection

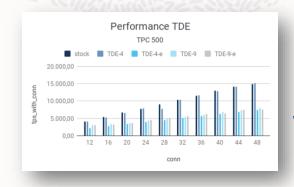
Don't Compromise on Data Protection

Some important Oracle data protection features that PostgreSQL is missing:

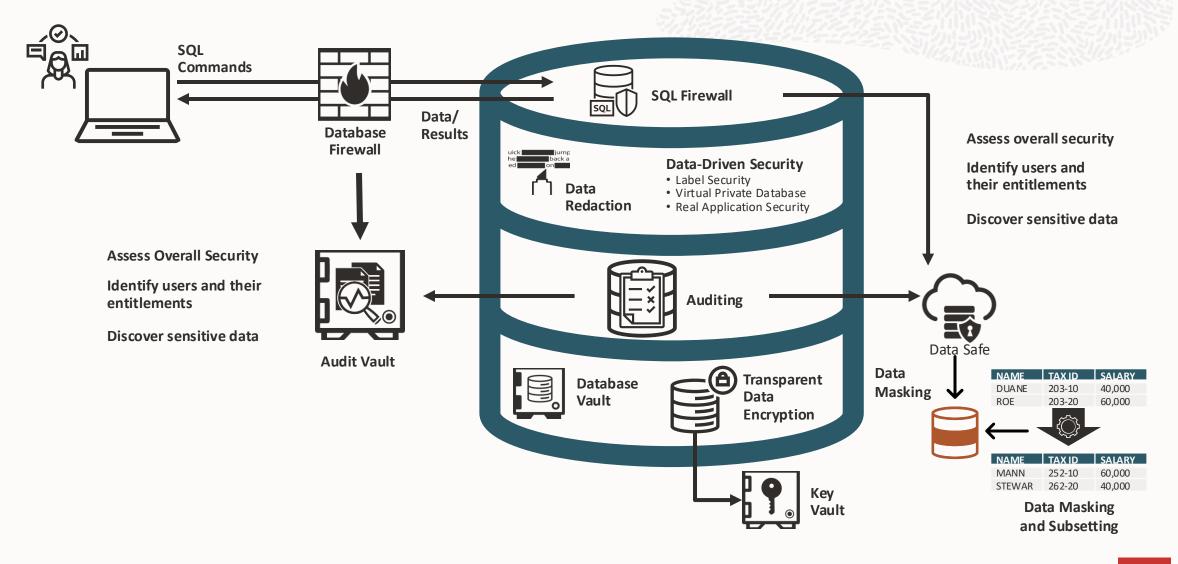
- On-disk physical block corruption detection and automatic repair (ASM, Active Data Guard)
- Lost write detection
- Flashback (time travel capabilities) to recover "human errors."
 - At the query, table, or database level
 - At the transaction level (with supplemental logging)
- Point-in-time recovery at the Pluggable Database level
- Automatic, fast reinstate of the standby after failover (Data Guard)
- Checksum validation from OS to HBA to Disk using DIX/DIF (Exadata)
- Hardware-Assisted Resilient Data disk scrub and repair (Exadata)
- Corruption detection and periodical validation during backup and restore (ZDLRA)

Security

Don't Compromise on Security


Oracle offers enterprise-level security features missing in PostgreSQL

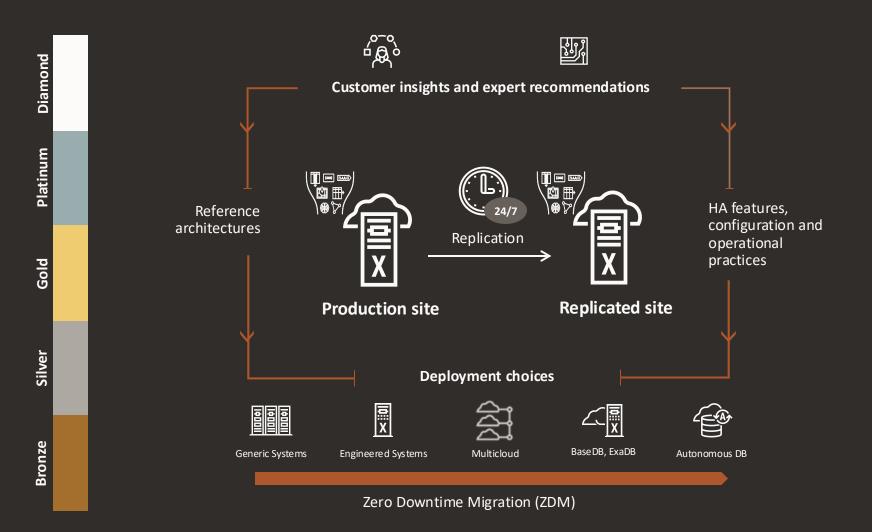
- In-transit Data Integrity with chained checksums
- Data Redaction hides sensitive data
- Data Masking and sub-setting mask cloned production data
- Database Vault prevents insider threats, data leakage, privileged access
- Label Security protects data based on sensitivity
- Lockdown profiles prevent specific operations at the database (PDB) level
- Transparent Data Encryption (Cybertec sells a variant of TDE, but there's a performance impact)


- Audit Vault & Database Firewall
- Native SQL Firewall (23ai)
- Privilege Analysis
- Key Vault
- Data Safe

Oracle's Maximum Security Architecture

Availability

Don't Compromise on Availability


Oracle has some unique high-availability features

- Active-active high availability with Real Application Clusters and Sharding
- Flashback technologies for faster data recovery
- Fast Application Notification and session draining
- Online maintenance:
 - At the infrastructure level with Real Application Clusters and Exadata
 - At the database level with DBMS ROLLING, including major upgrades
 - At the schema level with Online Operations, DBMS_REDEFINITION, and Edition-Based Redefinition
- Fast incremental backup at the block level
- Application Continuity
- Exadata's unique protection features

Next Gen Maximum Availability Architecture (MAA)

High performance

Resource Management

True Cache

Continuous availability

Redefinition

Data protection

ZDLRA+ ZRCV

Active replication

Active Data Guard

Full Stack DR

Scale out & Lifecycle

Database

Application Testing

Next-Gen MAA Reference Architectures

Availability service levels for the next generation of Oracle Database

Bronze

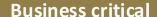
Single instance DB

Dev, test, prod

Restartable

Backup/restore

Prod/departmental


Silver

Bronze +

Database HA with RAC or Local Data Guard

Client failover HA best practices

Application Continuity (optional)

Gold

Silver with RAC +

DB replication with (Active) Data Guard with automatic failover

Client failover DR best practices

Mission critical

Gold with Exadata and either option:

Option 1: GoldenGate with Oracle Database 19c

Platinum

OR

Option 2: (Active) Data Guard with Oracle Al Database 26ai

Extreme availability

Diamond (NEW)

Configuration

GoldenGate 26ai replicas, each running:

Oracle AI Database 26ai + RAC on Exadata

+ (Active) Data Guard

Recoverable local failure:

Minutes to hour

Disasters: Hours to days

RPO < 15 min

Recoverable local failure: seconds to minutes
Disasters: Hours to days

RPO < 15 min

Recoverable local failure: Less than 60 seconds Disasters: < 5 min RPO = zero or near zero Recoverable local failure: Less than 20 seconds Disasters: < 30 secs RPO = zero or near zero Recoverable local failures: Less than 10 seconds Disasters zero to 10 secs RPO = zero or near zero

Compatibility

PostgreSQL Compatibility has Challenges

Major versions make complex changes, so the contents of the data directory cannot be maintained in a backward compatible way. A dump/reload of the database or use of the pg_upgrade application is required for major upgrades.

Source: https://www.postgresql.org/support/versioning/

- Extension upgrades can be problematic (2)
- Replicas require identical OS package versions (3)
- Different vendors offer solutions for the same problems (e.g., backups) (4)

- (1) https://www.endpointdev.com/blog/2015/07/how-fast-is-pgupgrade-anyway/
- (2) https://repost.aws/knowledge-center/rds-postgresql-upgrade-postgis
- $(3) \ https://stackoverflow.com/questions/68204965/is-it-a-problem-to-mix-different-os-versions-in-a-postgresql-cluster and the state of the state$
- (4) https://wiki.postgresql.org/wiki/Ecosystem:Backup

Oracle has an Amazing Backward Compatibility

```
SQL> set transaction use rollback segment my_old_app_was_using_in_8i;

Transaction set.

SQL>
```

- Every deprecation and desupport goes through deep scrutiny
- Most commands and tools work across releases
- The compatibility parameter allows downgrading the database in case of problems
- Exadata streamlines upgrading the whole stack (firmware, OS, binaries)

Observability

Oracle Database has Superior Observability and Instrumentation

10x more wait events (~2300 vs ~230)

50x more performance views

Automatic Workload Repository vs. pg_profile

Automatic Database Diagnostic Monitor

Active Session History

Traces and Events (e.g. 10053 and 10046)

Real-Time SQL and Operations Monitoring

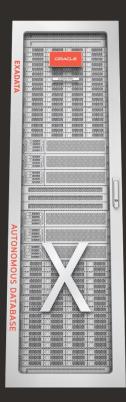
Enterprise Manager

Performance

Oracle Database has Outstanding Performance Capabilities

Postgres architectural limits slow down the workload

- Vacuum Management
- XID Wraparound
- Write amplification
- Prepared statements can be problematic ⁽¹⁾
- No asynchronous I/O


The XID wraparound issue requires careful monitoring and, in some cases, throttling the workload to avoid encountering it.


Oracle advanced performance capabilities

- In-memory
- Adaptive Cursor Sharing
- Adaptive Statistics
- Many performance advisors
- SQL Plan Management
- Automatic Indexing
- SQL Performance Analyzer
- Superior partitioning and materialized views
- Real-time statistics
- Autonomous Database's unique features (Automatic Partitioning and MVs)

• ..

Exadata performance features

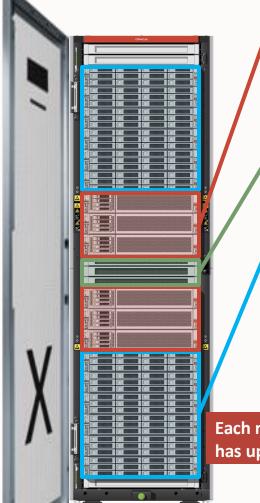
Scalability

Choose Performance, Consistency, and Scalability

PostgreSQL cannot scale out writes without extensions or forks.

- Consistent scale-out requires synchronous replication that increases throughput but also latency.
- Some scalable forks are either good at OLTP or OLAP but not both. (1)
- Some scalable, multi-purpose forks are not consistent across shards (2)

Oracle Real Application Clusters and Exadata are the foundation for extreme performance.


- Only Real Application Clusters delivers transaction performance and scalability together.
- Oracle Exadata pushes performance and scalability to the extreme (<17 μ s OLTP I/O latency).
- Oracle Globally Distributed Database unlocks inter-cluster horizontal scalability.

⁽¹⁾ https://docs.yugabyte.com/preview/faq/general/#when-is-yugabytedb-not-a-good-fit

⁽²⁾ https://dev.to/yugabyte/citus-is-not-acid-but-eventually-consistent-3711

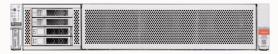
Exadata X10M: Extreme Performance Scale-out Database Platform

Scale-Out 2 Socket Database Servers

- Latest 96-core AMD EPYC[™] CPUs
- Up to 3 TB Memory

Ultra-fast 100Gb/s RDMA over Converged Ethernet (RoCE) Internal Fabric

Scale-Out *intelligent* 2-Socket Storage Servers


- Latest 32-core AMD EPYC[™] CPUs
- 1.25 TB Exadata RDMA Memory (XRMEM) per storage server
- Three tiers of storage: XRMEM, NVMe Flash, HDD

Each rack has up to...

Compute Capacity Storage Capacity

2,880 DB Cores 33 TB Memory 1088 Storage Cores 21.25 TB XRMEM 462.4 TB NVMe Flash 2 PB Raw Flash Capacity 4.2 PB Raw Disk Capacity

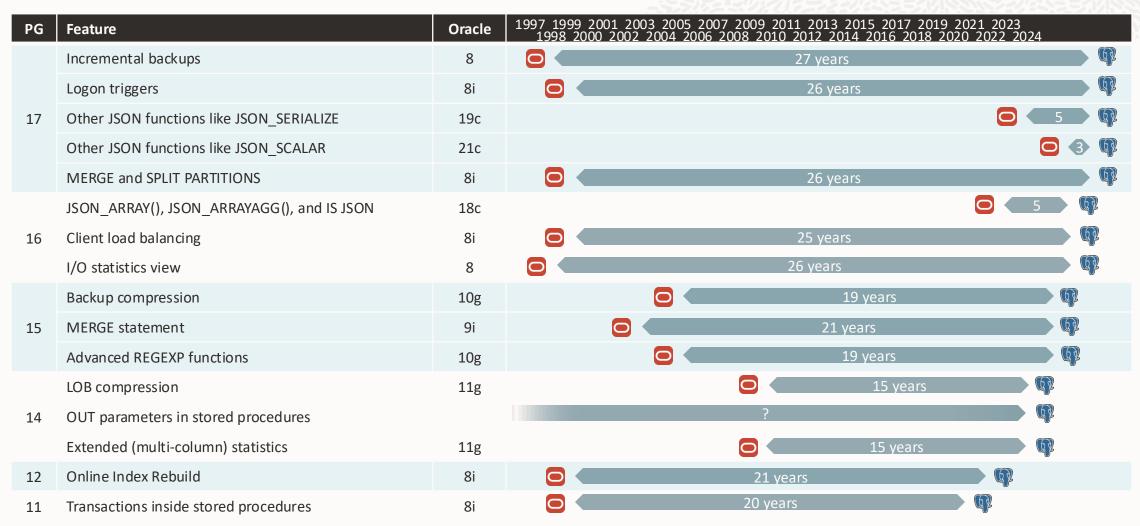
Database Server

High-Capacity (HC) Storage

**************************************	1 g	\$ 5 1 T	\$ \\ \{ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$ 2 t	
IA EL manuel	1	1	1 1 m	1	
		7 5 m	1	1	

Extreme Flash (EF) Storage

Extended (XT) Storage



Innovation

PostgreSQL Core New Features (v11 to v17⁽¹⁾)

 $(1) \ https://pgpedia.info/postgresql-versions/postgresql-17.html \ https://pgpedia.info/postgresql-versions/postgresql-16.html \ https://pgpedia.info/postgresql-versions/postgresql-15.html \ https://pgpedia.info/postgresql-versions/postgresql-14.html \ https://pgpedia.info/postgresql-versions/postgresql-12.html \ https://pgpedia.info/postgresql-versions/postgresql-11.html \ https://pgpedia.info/postgresql-versions/postgresql-11.html \ https://pgpedia.info/postgresql-versions/postgresql-11.html \ https://pgpedia.info/postgresql-versions/postgresql-11.html \ https://pgpedia.info/postgresql-versions/postgresql-12.html \ https://pgpedia.info/postgresql-versions/postgresql-11.html \ https://pgpedia.info/postgresql-versions/postgresql-12.html \ https://pgpedia.info/postgresql-versions/postgresq$

Planned PostgreSQL 18 features

Transparent Column Encryption

Asynch I/O (developer preview in 17)

Statistic export/import

Logical Replication DDL support

Logical Replication Conflict D&R

Row Pattern Recognition

Wire Protocol Compression

Better Partition Pruning

Parallel Vacuum and Index Creation

Jonathan Katz Wishlist

System versioned tables

Schema variables

Autonomous Transactions

Bulk functions in PL/pgSQL

Add online operations/DDLs

Bitemporal queries

Parallel recovery

Native global temporary tables

Source: https://jkatz05.com/post/postgres/postgresql-2024/

Some Unique Oracle pre-23ai Features

APEX

Advanced Queueing

Blockchain and immutable tables

In-Database Machine Learning

REST Data services

Polymorphic functions

In-Memory

Edition-Based Redefinition

Application Containers

SQL macros

Result Cache

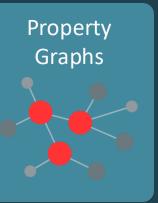
Analytic Views

Oracle Database 23ai – 300+ New Features

Boolean Datatype

JSON Schema

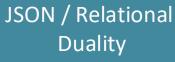
Oracle Database


23ai

Bring AI to your data

Readable **PDB Standby**

True Cache

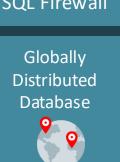


Real-time SQL Plan

Management

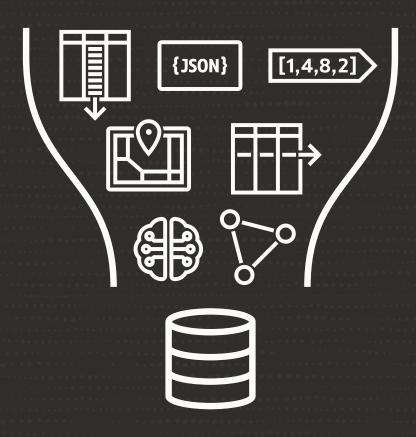
Priority Transactions

JS Stored Procedures



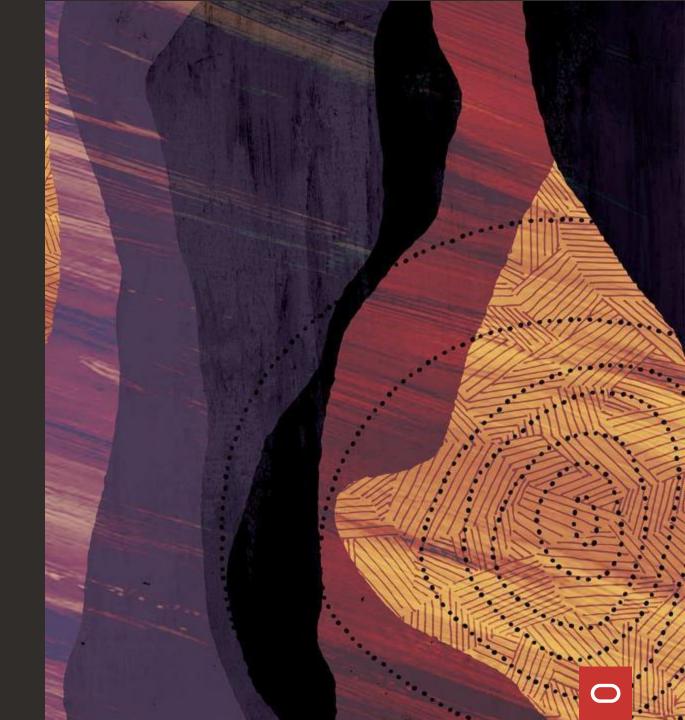
Shrink Tablespace

Schema Privileges



Some words about Total Cost of Ownership

Spending time on Integration?



Focus on Business!

Thank you

ORACLE

Our mission is to help people see data in new ways, discover insights, unlock endless possibilities.

